14 research outputs found

    Architectures in parametric component-based systems: Qualitative and quantitative modelling

    Full text link
    One of the key aspects in component-based design is specifying the software architecture that characterizes the topology and the permissible interactions of the components of a system. To achieve well-founded design there is need to address both the qualitative and non-functional aspects of architectures. In this paper we study the qualitative and quantitative formal modelling of architectures applied on parametric component-based systems, that consist of an unknown number of instances of each component. Specifically, we introduce an extended propositional interaction logic and investigate its first-order level which serves as a formal language for the interactions of parametric systems. Our logics achieve to encode the execution order of interactions, which is a main feature in several important architectures, as well as to model recursive interactions. Moreover, we prove the decidability of equivalence, satisfiability, and validity of first-order extended interaction logic formulas, and provide several examples of formulas describing well-known architectures. We show the robustness of our theory by effectively extending our results for parametric weighted architectures. For this, we study the weighted counterparts of our logics over a commutative semiring, and we apply them for modelling the quantitative aspects of concrete architectures. Finally, we prove that the equivalence problem of weighted first-order extended interaction logic formulas is decidable in a large class of semirings, namely the class (of subsemirings) of skew fields.Comment: 53 pages, 11 figure

    Recognizable tree series with discounting

    Get PDF
    We consider weighted tree automata with discounting over commutative semirings. For their behaviors we establish a Kleene theorem and an MSO-logic characterization. We introduce also weighted Muller tree automata with discounting over the max-plus and the min-plus semirings, and we show their expressive equivalence with two fragments of weighted MSO-sentences

    Weighted first-order logics over semirings

    Get PDF
    We consider a first-order logic, a linear temporal logic, star-free expressions and counter-free Büchi automata, with weights, over idempotent, zerodivisor free and totally commutative complete semirings. We show the expressive equivalence (of fragments) of these concepts, generalizing in the quantitative setup, the corresponding folklore result of formal language theory

    Weighted recognizability over infinite alphabets

    Get PDF
    We introduce weighted variable automata over infinite alphabets and commutative semirings. We prove that the class of their behaviors is closed under sum, and under scalar, Hadamard, Cauchy, and shuffle products, as well as star operation. Furthermore, we consider rational series over infinite alphabets and we state a Kleene-Schützenberger theorem. We introduce a weighted monadic second order logic and a weighted linear dynamic logic over infinite alphabets and investigate their relation to weighted variable automata. An application of our theory, to series over the Boolean semiring, concludes to new results for the class of languages accepted by variable automata

    Weighted Linear Dynamic Logic

    Get PDF
    We introduce a weighted linear dynamic logic (weighted LDL for short) and show the expressive equivalence of its formulas to weighted rational expressions. This adds a new characterization for recognizable series to the fundamental Schützenberger theorem. Surprisingly, the equivalence does not require any restriction to our weighted LDL. Our results hold over arbitrary (resp. totally complete) semirings for finite (resp. infinite) words. As a consequence, the equivalence problem for weighted LDL formulas over fields is decidable in doubly exponential time. In contrast to classical logics, we show that our weighted LDL is expressively incomparable to weighted LTL for finite words. We determine a fragment of the weighted LTL such that series over finite and infinite words definable by LTL formulas in this fragment are definable also by weighted LDL formulas

    Splicing on Trees: the Iterated Case

    No full text
    The closure under the splicing operation with finite and recognizable sets of rules, is extended to the family of generalized synchronized forests. Moreover, we investigate the application of the iterated splicing on known families of forests. Interesting properties of this operation are established

    Algebraic Foundations in Computer Science: Essays Dedicated to Symeon Bozapalidis on the Occasion of His Retirement /

    No full text
    This collection of 15 papers honors the career of Symeon Bozapalidis. The focus is on his teaching subjects: algebra, linear algebra, mathematical logic, number theory, automata theory, tree languages and series, algebraic semantics, and fuzzy languages
    corecore